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AbIIract-Bifurcation under axial compression of discretely stringer-stiffened cylinders in the elastic and
plastic ranges is studied. The stiffeners are treated as long plates. Small-strain 12 !low and deformation
theories of plasticity are used. The effect of stiffener size on the critical stress is investigated; this is
discussed with reference to the critical stresses of an equivalent simply-supported panel, and of a long plate
simply-supported on three edges and free along one longitudinal edge. The effects of stiffener eccentricity,
and of the number of stiffeners, is also discussed.

NOTATION

AI (j .. I, •.• ,4) amplitudes of eiaenmode, eqn (3S)
A,. area of typical panel
A. cross-sectional area of typical stiffener

b.., curvature tensor
Cijtt coefficients in three-dimensional constitutive law, eqn (11)

ca'" plane-stress coefficients, eqn (16)
C;; coefficients relating effective stress-rates to mid-SUrface strain-rates, eqn (19)
d half-depth of stilfener
D variable in constitutive relations, eqns (20) and (21)
t eccentricity of stiffener
E Young's modulus

E. Secant modulus
~ tangent modulus

E., strain tensor of stiffeners
F functional to be tested for bifurcation

gi; metric tensor of panels

:~Jhi" dh,/dJI coefficients in constitutive relations, eqns (13), (14)
II second invariant of stress deviator tensor

K..II curvature tensor of stiffeners
I length of shell

m4 , M4 bending moment tensors for panels and stilfeners
It!{......,,, Alt...,.,l physical components of bendina moment tensors

""', N4 stress resultant tensors for panels and stiffeners
11(...,.". NI...,.,) physical components of stress resultant tensors

n strain-hardening exponent, eqn (IS)
N number of stilfeners
P total load actina on shell
r radius of panels

Sc'iJ1 dimensionless stress, equal to 11(•• •)/l1cu (Table I)
~? stress deviator tensor

t thickness of panels
t. thickness of stilfeners

,,", U" Components of mid·surface displacements in panels and stiffeners, respectively
(", v. w), (U, v, W) physical components of displacements in axial, tanaential and lateral directions

x axial coordinate
y tangential coordinate in stiffeners

Z, Z normal coordinate in panels and stiffeners. respectively

Oral symbols
a • mflr/l, where m• number of Ionaitudinal half-waves

P; p variables in solution to characteristic eqns (33)-(3S)
... mid-surface strain tensor in panels

f .. fIt 1xt physical components of f,,_

'Iij strain tensor
B circumferential coordinate of panel

Bo half "width" of panels
It." bendina strain tensor of panels
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1/01;.1/02; variables in eigenmode. eqns (36) and (37)
/I Poisson's ratio
f dimensionless axial coordinate... xlr

u, critical stress of stiffened shell
Ucruc critical stress of cruciform column. eqn (50)

uc• critical stress of elastic unstiffened cylinder, eqn (49)
Uponel critical stress of simply-supported cylindrical panel havina dimensions of panels in stiffened shell

u" critical stress of stiffener treated as lona plate. simply supported on three sides and free on one
longitudinal edge

u. prebuckling stress
u, yield stress in simple tension

Superscripts
(. :.) denotes the rate of change of (.. 0) w.r.t. any monotonically varying quantity

(oo.)W denotes (00 0) referred to ilh panel or stiffener
(.•.) denotes difference between increments of (0 00) on fundamental path and on bifurcated path.

t. INTRODUCTION

Most of the research on stringeNtiffened cylinders in axial compression has hitherto been
confined to the case in which the stiffeners are closely spaced. Analyses for linear-elastic
materials are then carried out by assuming that stiffener properties can be "smeared out", to
give an equivalently orthotropic shell. Such analyses have given results which are in reasonable
accord with experimental data [1]. Furthermore, the critical mode is an overall mode, in the
sense that half-waves in the circumferential direction extend over a number of stiffeners.

When shell is sparsely stiffened, the mode in the circumferential direction is likely to be a
local mode between stiffeners. Koiter[2] has considered this problem in the elastic range, and
has obtained results for the critical and initial post-critical behaviour on the assumption that the
stiffeners have negligible torsional rigidity and that no axial waves form along panel-stiffener
junctions. This enabled Koiter to consider only a typical panel between stiffeners. On this basis
it was shown that the post-critical behaviour is stable for sufficiently flat panels, while more
curved panels have unstable post-critical behaviour.

Stephens[3] has extended Koiter's[2] analysis by examining the critical and post-critical
behaviour of an axially compressed cylindrical panel, with the longitudinal edges of the panel
partially restrained against bending in the circumferential direction: this restraint was effected
by relating the edge bending moment of the panel to the torsional moment in the stringer.

Stephens also included the effects of internal pressure in his analysis, and showed that the
effect of torsional rigidity of the stiffeners, as well as that of internal pressure, was to increase
the critical load and reduce the sensitivity of the structure to imperfections.

Wang and Lin[4] analysed the bifurcation problem of a discretely-stiffened cylinder in axial
compression. Donnell's equations were used for the shell and Vlasov's thin-walled beam theory
for the stiffeners. In this way it was possible to treat stiffeners as beams of arbitrary cross
section.

Syngellakis and Walker[5] presented an analysis of the critical and post-critical behaviour of
sparsely stringer-stiffened cylinders, where the stiffeners were treated as narrow plates. The
solution procedure was considerably simplified by introducing a number of assumptions
consistent with experimental observations. It was then shown that such shells have several
critical loads in close proximity, a feature which could result in the coupling of modes in the
post-eritical range and led to an increase in imperfection-sensitivity. Initial post-critical paths
for each of the critical loads were shown to be either stable or unstable, depending on the shell
geometry.

In a later paper, Syngellakis and Walker [6] extended their earlier analysis by considering the
effects of geometric imperfections. In the earlier paper, the critical mode was assumed to be
symmetric about a panel mid-generator, and antisymmetric about a stiffener. The later paper[6]
assumed an initial imperfection of the same form, and established the imperfection sensitivity
characteristics of buckling into an eigenmode that was asymmetric about the panel mid-generator.

In the plastic range, the only work related to stiffened cylinders appears to be that of
Tvergaard [7], who extended Koiter's [2] analysis of a simply supported panel into the plastic
range. Tvergaard's analysis included an asymptotic analysis of the initial post-critical behaviour
and imperfection-sensitivity of an equivalent "hypoelastic" panel (i.e. with the elastic unloading
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branch of the stress-strain curve suppressed), as well as a numerical study of imperfection
sensitivity of the actual panel.

In the present paper the bifurcation of an elastic-plastic discretely stringer-stiffened cylinder
in axial compression is considered.

The analysis is essentially an extension of that of Ref. [5], in that we treat a shell which has
an even number of equally-spaced longitudinal stiffeners, which are modelled as flat plates. The
aim of this work is, firstly, to provide an analysis which will complement earlier elastic
analyses. The results presented later should give an idea of the circumstances under which it
can be expected that bifurcation will take place after the onset of plasticity; in particular, the
main body of the results will centre of the effects of stiffener size on critical stresses, for both
elastic and elastic-plastic shells.

When the critical stress O'SI of a stiffener, treated as a long plate simply supported on three
edges and free along one longitudinal edge, is much lower than the critical stress O'pancl of a
simply-supported cylindrical panel, the critical stress O'c of the stiffened shell is expected to be
reduced to a value below that of O'panel.

We shall discuss this phenomenon in greater detail for internally-stiffened shells, in order to
show more clearly how the critical stress varies with stiffener size. It will be argued that this
consideration may become more important if efforts to optimise the design of stiffened shells
are increasingly directed towards optimisation with respect to the slenderness of stiffeners.
Furthermore, in these circumstances the results of Koiter[2] and Tvergaard[7] may be mislead
ing, inasmuch as a very low torsional rigidity of the stiffeners could result in a critical stress O'c

significantly less than O'paneh because of the destablising influence of the stiffeners.
This is contrary to the implications from Refs. [2,7] that shells having stiffeners with low

torsional rigidity may be treated as an assemblange of simply-supported panels; this would then
yield a critical stress equal to O'panel. Results presented will also include a comparison of critical
stresses of shells with inside stiffening, with those having outside stiffeners.

2. THE SHELL MODEL

Consider the stiffened shell in Fig. I, which consists of a circular cylinder with an even
number of equally spaced longitudinal stiffeners. The shell has radius r, wall-thickness I, and
length /, while each stiffener has depth 2d and thickness I.. Furthermore, the width of each
panel is given by the angle 280: that is,

80 ='IT/N, (1)

where N is the number of stiffeners. The coordinates of the ith panel midsurface are
(Xl, x2

) =(x, 8(j~ and the coordinate z measures distances outward from the panel mid-surface.
The coordinates of a typical stiffner are (X" X~=(x, Y), as shown in Fig. 1: each stiffner is
considered to be a flat plate with midsurface in the (X" Xv plane, and distances normal to the
midsurface are measured by the coordinate Z. The centroid of a stiffner is in general a distance
Y=e from the shell midsurface; so, for a shell that is internally stiffened, we have

(j)

Fig. I. Geometry of stiffened shell.
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e=d-t/2. (2)

The shell is subjected to a uniform axial compressive stress U;c, applied over the end areas of
the panels and stiffeners.

3. KINEMATICAL CONSIDERATIONS

The displacements of the shell midsurface are ua in the direction of the surface base
vectors, and w in the direction of the outward unit normal; the inplane stiffener displacements
are Ua , referred to the (XIt X~ axes, and W normal to the stiffener midsurface. Here Greek
sub- and superscripts range from 1to 2.

In the following the strain-displacement relations of DonneU-Mushtari-Vlasov shell theory
are used for the panels; these are

(3)

(4)

where ();o denotes covariant differentiation and (),a Partial differentiation with respect to a. fall

and ~ are the midsurface membrane and bending strain tensors, and ball is the curvature
tensor for the undeformed midsurface. For a typical stiffener, the membrane and bending strain
tensors E..tJ and Koll are

(5)

(6)

these quantities are referred to the rectangular axes of the stiffener. Furthermore, the strain
tensor~ is related to the membrane and bending strain tensors by

flail =fall- ZKaIl in the shell,

"laP = E,.p - ZK,.p and in the stiffeners.

(7)

(8)

The condition of continuity of displacements (Physical components) and slopes at the ith
stiffener-panel junction is expressed as

u(/)(x, 80) =U(i)(x, e) =U(I+I) (x, - 80)

v(l)(x, 80) =WI)(x, e) =V(I+I)(X, - 80)

w(l)(x, 80) = yll)(X, e) =W(I+I)(X, - 80)

1 (.) . 1rw,~ (x, 80) =- W~;)(x, e) =rW~~+I)(X, - 80).

(9)

Following Syngellakis and Walker [5], we assume that the stiffener cross sections remain
straight and normal to the shell; in other words, that

U(I)(x, y) =u(/)(x, 80} - (y - e)w~~)(x, 80)

v<1)(X, y) = w(I)(x, 80)

W(I)(x, y) = v(i)(x, 80) - ~ (y - e) w~~)(x, 80)

(10)

for the ith stiffener. Hereafter the (i) superscripts will be omitted when it is obvious that we are
referring to a typical panel or stiffener.
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4. CONSTITUTIVE RELATIONS

The three-dimensional stress-increments ul/ and strain increments 11111 are linearly related by

(11)

Two small stnin theories of plasticity are used. For 12 ftow theory, the instantaneous moduli
e-are

(12)

where

and 11/ is the metric tensor of the shell (equal to the Kronecker delta in the case of the
stiffeners). The function hl(l~ is determined from the tensile stress-strain curve in terms of the
tangent modulus ~, as

hi =3(FJ~ -1)/(41~ for 12 =(1~war. and i 2 ;;eO

o for 12 < (1~mu. or i2< O.

Secondly, for 12 deformation theory,

~ _ E [! /II jl U II< 31' +h2 Ii III _ h~Sl/stJ ]
v· - I + I' +h2 2(I I +I I )+3(1- 21') I I 1+ I' +h2+2hi12

(13)

(14)

where hi..J~ =3(FJE, - 1)/2 and is found from the tensile stress-strain curve; E, is the secant
modulus and hi =dh,JdJ2•

Uniaxial behaviour is represented by the following piecewise power law

f - {ofE for u :S u,
- u,JE[(u!u,)"/n +(n-I)/n] foru>u, (IS)

in which the taqent modulus is continuous at the yield stress and n is the strain-hardening
exponent.

The usual assumption of a state of approximate plane stress in the shell and stiffeners gives

(16)

where Greek indices range from 1to 2, and the plane-stress moduli~ are found from

Bendina moment and stress resultant tensors are defined by

(17)

n" =fll2 ~ dz,
-112

f'12
N--= ~dZ,

-',/2

m.. ·fll2 ~zdz
-1/2

f',/2
M--= 04ZdZ.

-',/2

(18)
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Birfurcation is assumed to take place from a membrane prebuckling state of uniform axial
compressive stress. Now, for bifurcation to occur at the lowest eigenvalue, it is necessary that
no elastic unloading takes place. The unloading branch, represented by the second of the
stress-strain relations (13), must therefore be suppressed in the case of the flow theory. Under
these conditions the use of (7,8, 16) in the rate of form of (18) gives the following relationships
between physical components of stress-resultant rates, and membrane and bending strain rates:

[

Ii" ] [CII
~ =EI CI2

n", 0
oJ[~'Jo ,c,

2Cll ,cd

(19)

where, for J2 flow theory,

and, for J2 deformation theory,

CII = (EIE, + 3)/4D

CI2 = (EIE, +2v - 1)/2D

Cn = (ElE,)/D

Cll = 1/2(1 + v)

D = 1/4{(5 - 4v)EIE, - (1 - 2V)2}

CII = (ElE, +3E1E.)/4D

Cl2 = (EI£, +2v-O/2D

Cn =(ElE,)1D
Cll = [2(1 + v)(1 +3(EIE. - 0/2(1 + v)}r'

D = {(3E1E. +2- 4v)ElE, - (1- 2v)~/4.

(20)

(21)

For the stiffeners, the corresponding stiffener quantities appear in (19), and t is replaced by I•. The
usual elastic coefficients are recovered by setting E, =E in (20).

S. CRITERION FOR BIFURCATION

To find the stress Uc at which bifurcation occurs, the uniqueness criterion given by
Hutchinson[8] for DMV shell theory is used: that is, for the functional F, given by

F = f {r (m"".c..~ + ii""ia~ + lIo""W,aW,~) dA/'
f.:'1 JA,m

+ r (M""g.., +N""E.., +No""W...~~) dA.(i)} (22)JA,II)
the condition

F>O

is sufficient to ensure uniqueness of the solution increment at any stage of the loading
programme. Here a tilde (-) superscript denot~s the difference between increments on the
fundamental path and those on the bifurcated path, and summation is over all panels and
stiffeners. For bifurcation to be possible at the lowest eigenvalue, it is necessary that no elastic
unloading occurs; F then attains a zero minimum, and the eigenvalue problem can be stated as

8F=O (23)
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subject to the constitutive relations, eqns (19), and the compatibility conditions, eqns (3)-(6).
The variational eqn (23) then becomes, in terms of physical components,

f {f .(mx8Kx+2mlle8K1l8 +ihe&K8 +ox8Ex+2oxt8E1l8
,-I Api"

+ite8ie +O'ctw'1l8w'1l) dA,(i) +f (M1l8Kx+2Mx,8Kxy
A !II•

(24)

Substitution of the strain-displacement relations into these variational quantities and use of the
divergence theorem in the usual way, requires that the equations

flxt,x +(1/r)fl... =0

mx,;< +(2/r)mxf.xt +(J!r>rii,." +iiJr- uJw,;rx =0

(25)

(26)

(27)

be satisfied for each panel, and that on the boundaries the line integrals satisfy the conditions

f {flo {lix8u +lix,sv +mx8w,x +(UJW'll- riix,;< -2riixf.'/r)8wm:&rdB<'1
,-I -'0

+it {flx,sQ +fl,8ii - (rii...lr+ 2riixf... )8w +m,8w,'/r}],R:!.e'odx

+(2/r)[mx,sw]~:& ]~B:!o'o

-I t f4 {(Nx... + Nxy,y)8U + (Nx,... + N",)8V + (uet, lV,.u - Mx,xx
o -4

- 2Mxy,xy - My.,,)8W}]ril_'o dy dx

+it{Nx,8U + Ny8V+ M,8lV,y - (2Mxy... + MY'7)8W}H:~4 ]rll-'odx

+2[Mx,8W]~:~4 ]~:& ]rll-,J =O. (28)

The stiffener variational displacements in (28) may be written in terms of panel variational
displacements, using (10). A set of boundary conditions are then extracted from (28); these are
given in the Appendix.

With the aid of the constitutive equations and followina Storlkers [9J eqns (25)-(27) may be
written in terms of displacement rates, in the uncoupled forms

where

La =CnWtlH - CI2W,.

Lii =- (1/CnXCuCn - Cf2- CI2Cn)W.- - Cnw....

(CuCn - Cf21w'«ff+ L[(t2/12r)L'(w)-(uJE)w.«] =0

(29)

(30)

(31)

L() =Cu( )tftU +(J!C33)(CuCn - Ci2 - 2C1~n)(>... +Cn<).....

V( ) = Cu( )'«ff + 2(CI2 + 2Cn)( ),l(H + cn< ),....

and where the dimensionless coordinate l =xlr.
As in Ref. [5] it is assumed that the eigenmode of radial displacement wis symmetric about

the mid-generator of a panel. and antisymmetric about a stiffener. Such an assumption is
supported by experimental observations of tests carried out on sparsely stiffened cylinders[10].
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The assumption of antisymmetry, together with the compatibility conditions (9) result in the
longitudinal edge requirement

w(~, 80)=0

for each panel.
A separated solution to eqn (31) is now sought in the form

Iii = sin a€ exp (PO)

(32)

(33)

for a typical panel where a = m1Trlt, and m is the number of longitudinal half-waves. The
characteristic equation is

(CIICn - Crva"+ {Cl\a" +CIlCn - ~:3-2CI2C33 a2~+ CnP"}{l~~

(Cl\a"+2(C12+2C33)a2~+ CnP") +~ a2} =O. (34)

Making use of the condition of symmetry of wabout B=0, we find that there are four distinct
roots of P; for the ith panel, therefore,

(35)

where fJi = iPi, i = v-I, and the Ai are constants, in general complex. Equations (29) and (30)
may now be solved, using (35), to yield

"a=cos at~ AjJLli cos fJiB
/-1

where

JLli =(CI2a3- CnafJ?>I{Cl\a"+~33 (CI\Cn - Cf2- 2CI2C33)a2fJl+ CnfJ/}

{~ (CIICn - Cf2 - C12C33)a2 +CnfJl}
JL2i = 33

{Cna"+ ~33 (C\lCn - Cf2- 2CI2C33)a2fJl+ CnfJl"}

The solutions (35)-(37) identically satisfy the boundary conditions

a" = v" = w= w'u = w,,, = 0 at e= 0, tIr:

v= v'u = W= w" = w,,,, =0 at €=O, tlr and 8(i)= 80.

(36)

(37)

These can be seen to satisfy conditions (i)-(iv) and (x)-(xv) in the Appendix. It therefore
remains to satisfy the conditions (v)-(ix).

Now, from the assumption of antisymmetry of wabout a stiffener,

(38)

and therefore
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AP}=-Ap+1l (39)

From(36), it can be seen that Ii, like w, is symmetric about apanel mid-generatorand antisymmetric
about a stiffener (from 39). Along the ith stiffener, therefore, ii and ware set equal to zero.

The boundary conditions at the ith panel-stiffener junction (e(i) =eo) are

u=o
w=o

(40)

(41)

which satisfy boundary conditions (v), (vii) and (ix); after some simplification, (vi) and (viii)
become

(42)

(43)

Substitution of (35)-(37) and (39) into (40)-(43) yields the set of homogeneous linear equations in
Ai

(44)

(45)

I AJ{C22(p,2i!Jl-1)+ Ct2ap,t,.} cos PA+a2~ {i +li~ Clla2} I AJPJ{P-2i +.r) sin M =0
(46)

which can be written in matrix form as

M{A} =0.

(47)

(48)

A non-trivial solution for AJ can then be found for a particular value of a once the roots PI
have been found from (34) for a chosen value of tTJE. An iterative process is then employed to
find the value of tTJE at which det (M) in (48) vanishes. The process may then be repeated to
find the least eigenvalue and corresponding eigenmode. Because of the simplifyina assumptions
made, it has only been necessary to solve the equilibrium equations for a typical panel, and to
satisfy the boundary conditions along a typical stiffener.

6. PRESENTATION OF RESULTS

Figure 2 shows a typical plot of critical stress tTl: VI q(a). where tTl: is normalised with
respect to the classical critical stress of an elastic undeRed cylinder tTC\I; this stress is given
by
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Fig. 2. Critical stresses U< and Upanel for stiffened shell and equivalent panel. respectively; rlt = 100,
internally stiffened with 10 stiffeners having d/t = S. d/t, = 10. Curves are for elastic materials. and

elastic-plastic materials (llow theory) having u,fE = 0.002.

Ucu = - Etlry'(3(1 - 1/2». (49)

The shell radius-thickness ratio is r/t =100, there are 10 stiffeners, and the stiffener geometry is
specified by d/t. =10, tJr =0.005; the shell is internally stiffened. Curves are drawn for an
elastic material, and for elastic-plastic materials having a yield stress uJE of 0.002, and
strain-hardening exponents of n =3 and 10 (high and low strain-hardening, respectively). Also
shown in the figure are curves corresponding to the stresses of elastic and elastic-plastic
simply-supported panels of the same width as the panels of the stiffened shell. These results
were found from Timoshenko and Gere [11] and from Tvergaard's [7] analysis. For this
geometry the least critical stresses are all quite close to those for simply-supported panels
having the same width as the panels in the stiffened shell.

(a) Effect of stiffener size
In this section we present some results which show the effects of stiffener size on an

internally-stiffened shell. Of particular interest is the possible detrimental effect of very slender
stiffeners, as mentioned briefly by Syngellakis and Walker[6]; we shall examine these effects
more closely, for elastic as well as elastic-plastic shells.

Consider first the following: a long axially compressed plate such as one of the stiffeners,
when simply-supported on three sides and free along one of the longitudinal edges, has a critical
stress 00,\ proportional to (thickness/breadth)2 in the elastic range. This is close to that of an
axially compressed cruciform column whose flanges have the same dimensions as the plate [11].
If the width is 2d and the thickness t., then the respective stresses in the elastic range are

00,\ =- 0
1

.75 G (tJ2d)2,
-v

ucruc =- G(tJ2d)2 (SO)

where G =El2(1 +1/) is the elastic shear modulus. For a value of II of OJ, the two stresses
differ by 7%. In the plastic range, the value of Ucruc is the same as the elastic value, eqn (SOh, if
flow theory is used (12). An analysis of the corresponding plate problem would show that the
flow theory stress is also practically equal to the elastic value of 00,\. With the use of
deformation theory, though, the values of 00" and Ucruc: can be significantly reduced(12).

In Figs. 3 the least critical stress Uc of an internally stiffened shell is plotted vs d/t, with the
value of dlt. held constant in each of the figures. The shell has radius-thickness ratio
r/t =100, and 10 stiffeners. Therefore, in each figure 00,\ is a constant, while the increase in d/t
along the horizontal axis may be interpreted as a increase in stiffener size. This is depicted in
Figs. 3, below the corresponding graphs. The values of U_h the least critical stress of a simply
supported panel with the same dimensions as a panel in the stiffened shell, are shown in the
figures, as are the values of 00,\.
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For dlts = 10, Fig. 3(a), US! ~ Upanel. Here Uc decreases with an increase in dlt for the elastic
and elastic-plastic (flow theory) cases, from a value close to Upanel to a value approaching US!,

For dlts = 5, Fig. 3(b), US! < Upanel in the elastic range, and we see the same behaviour as in Fig.
3(a). For elastic-plastic shells (flow theory), Ust == Upanel for n =3, and US! > Upanel n =10.

Here Uc for the stiffened shell decreases for n =3, and remains virtually constant for n =10.
Finally, for dlts = 2, Fig. 3(c), US! is very high and we see that Uc is slightly greater than Upanel,

and virtually constant, for all materials.
These results may be summarised as follows: when US! < Upaneh the critical stress of the

stiffened shell decreases from == Upanel to == US! over the range of dlt considered (see Fig. 3(a), all
cases; 3(b), elastic). When US! == Upaneh the critical stress of the stiffened shell decreases slightly
(sec Fig. 3(b), n =3). When US! > Upaneh the critical stress of the stiffened shell remains close to
the value of U panel. As far as the results for deformation theory go, similar conclusions apply,
this time with respect to the values of us.. Upanel and Uc found using deformation theory.

It is necessary to point out at this stage that the results for low values of d/ t should be
subject to further investigation. The assumptions which were made regarding the mode of
buckling deformation (e.g. Ii> = 0 along a panel-stiffener junction) are not necessarily applicable
for such a case, as an overall buckling mode (i.e. half-waves extending circumferentially over a
number of stiffeners) is clearly possible.

The above results contrast with those of Koiter [2] and Tvergaard [7]. These authors have
given results for simply-supported panels which form part of a stiffened shell, whose stiffeners
have negligible torsional ridigity. According to these analyses, the stiffened shell which we have
considered should have a critical stress close to Upaneh when the torsional stiffness of the
stiffeners is low.

However, when the stiffeners have low torsional rigidity, i.e. when US! ~ Upaneh the critical
stress of the stiffened shell can be reduced to a value significantly lower than Upanel' In
particular, returning to Fig. 3(a), as the stiffener size increases relative to the shell with US!

remaining constant, the value of Uc decreases. An interpretation of behaviour is that,
as the stiffener size increases, the resistance to deformation of a stiffener provided
by the adjacent panels becomes relatively smaller, and so the composite shell buckles
at a stress which approaches US!. Therefore, in the design of such a stiffened shell, one would
have to weigh the advantage of an increase in bending stiffness in the axial direction, against the
possibility of destabilization due to the slenderness (and therefore low torsional rigidity) of the
stiffeners. When US! ~ Upaneh as in Fig. 3(c), the relatively low value of Upanel governs the critical
stress of the stiffened shell. The value of Upanel could, of course, be raised by making the panels
narrower, i.e. by increasing the number of stiffeners, This can be seen in Table 1; here, as the
number of stiffeners increases, Upanel increases. Furthermore, US! ~ Upanel and the value of U c is

Table I. Dimensionless critical stresses S(. ..I = u(.. )u.. for an internally-stiffened shell with rtt =100.
dl I, =2, dl I =10; u,lE =0.002 for elastic-plastic materials

No.of Stiffen(>rs 10 20 \0

I
Sst 3. 'J67 3.967 3. (j61

Elastic
S 1.000 1.018 1. 549

pane
S~ 1.023 1. 443 2.586

n=3 Sst 3.967 3.967 3.%7

(flow theory)
S 0.&18 O.R21 1. 307

pane
S 0.&21 0.~59 1. 777

c

n=3 Sst 1.033 1.033 1.033

(def. theory) S 0.557 0.&25 O.74(J
pane

S 0.570 0.793 0.88~
c

n=10
Sst 3.96~ 3.%7 3.9&7

(flow theory)
S 0.42& 0.578 1.133
pane

S 0.428 O. 78~ 1.577
c

n=10
S 0.514 0.514 0.514

(def. theory)
st

S 0.405 0.437 0.470
pane

S 0.405 0.451 0.493
Ic
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such that it lies in the range O'pancl < O'c < 0'11' We see here that an increase in the number of
stiffeners can raise the values of 0'..-1 considerably, and hence also the values of O'e-

It is worthwhile at this stage to make a few remarks about the deformation theory results. In
Figs. (3) the deformation theory values of O'pancI and 0'11 are such that the ftow theory values of
O'c and that found using deformation theory differ by a relatively small amount. This may not
always be the case, as some of the results in Table 1 show; in particular, for N =20 and
strain-hardening exponent n =10, the two values of O'c differ significantly. So it appears that the
large discrepancy between ftow and deformation theory values of 0'.. (as in the case of
cruciform column[l2]) can affect the value of O'e- A more detailed study is necessary, though, in
order to determine how this discrepancy depends on material and geometrical properties.

In Figs. 4 we replotted the results shown in Figs. 3, this time showing how dimensionless
critical load PlErt varies with stiffener size. As expected it is still possible for the total critical
load to decrease despite an increase in overall cross sectional area.

(b) Comparison 01 inside and outside stiffening
The preceding set of results was repeated for shells with outside stiffening to examine the

difference between externally and internally stiffened shells. FIgUres (5) show graphs of O'ovI./O'in

against dlt for dlt, =10 and 5. In both ca~es, results are shown for elastic shells (n =1) and for
elastic-plastic shells having u.,JE =+0.002 and n =3,10 (only ftow theory was used here). The
effects of having outside stiffeners is to cause an increase in critical stress. For dlt, =2, no
graph is shown as O'ouJO'in was found to be -1.0 for all cases. Also, for the plastic shells the
effect of outside stiffeners is not as significant as for the elastic case, which one would of
course expect since any potential increase in critical stress due to the shell having outside
stiffeners is counteracted by the rapid decrease in material stiffeness in the plastic range. The
results for the elastic case are very similar to those of Wang and Lin[4], who considered the
relationship between critical stress and stiffener eccentricity, for stiffeners of constant cross
sectional area. In the present case, though, the increase in eccentricity is associated with an
increase in stiffener depth. It would appear that, the cases where 0'11 < O'panel (Figs. 3(a), (b» the
decrease in value of critical stress with an increase in stiffener depth is to some extent offset by
the increase when outside stiffeners are used. A note of caution is perhaps in order. In the case
of heavily stiffened shells, the advantages gained by the use of outside stiffeners have to be

~11(,.'h'

-d/t,,2

5
10

F".,. •. Dimensionless criticaJ total load PlErt vs d1t, for values of dil, of 2, 5, 10, and for eJutic: IIId
elastic-plastic materials. u,JE· o.rm and elastic-plutic curves arc: for l\ow theory.



326

18 Eir..:.
0'",

16

14

12

10

08

06

04

02

B. D. REDDY

-d/t,S
------ 10

d/t
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rig. S. Ratio of critical stress of externally stiffened shell to that of internally stiffened shell, vs dII, for
dll, = Sand 10. 17,1E=0.002 and elastic-plastic curves are for flow theory.

considered in the light of an increase in imperfection-sensitivity[l3). The present analysis has
not considered the effects of imperfection-sensitivity, but similar behaviour for sparsely
stiffened shells is a distinct possibility. In the plastic range, moreover, the rapid decrease in
material stiffness would further contribute to the imperfection-sensitivity.

7. CONCLUDING REMARKS

The eigenvalue problem for buckling of a discretely stringer-stiffened cylindrical shell in
axial compression has been formulated. The analysis given is an extension of that of Syn
gellakis and Walker[5) into the plastic range. Results are given for elastic shells, and for
elastic-plastic shells using both J2 flow and deformation theories.

Considerations of the effects of stiffener size on the critical stress have confirmed that,
when the critical stress of a stiffener treated as a plate with one longitudinal edge free, is much
lower than the critical stress of a simply-supported panel, the critical stress of the composite
structure can fall significantly below that of the simply-supported panel. This observation
contrasts with the suggestion [2, 7) that the critical stress of stiffened cylinders whose stiffeners
have low torsional rigidity may be approximated by the simply-supported panel critical stress.

When the torsional rigidity of the stiffeners is high, through, the value of the O'panel is a lower
bound to the critical stress of the composite shell, and it may be increased by increasing the
number of stiffeners, i.e. by making the panels narrower. The limited study presented of the
effects of increasing the number of stiffeners verifies this, and the value of O'c can be increased
considerably by increasing the value of O'panel.

Results for deformation theory indicate that the descrepancies between flow and defor
mation theory predictions of 0"1 and O'panel can in certain cases lead to a similar discrepancy for
values of O'c.

Acomparison of critical stress of internally-stiffened shells with those of shells with outside
stiffeners shows that where 0"1 < O'paneh the decrease in critical stresses with an increase in
stiffener depth is to some extent offset by the increase when outside stiffeners are used.
Although the effects of initial imperfections on the stiffened cylinders in the elastic range have
been investigated [5,6) consideration of these effects in the plastic range is still outstanding.

However, the analogy outlined between the behaviour of the stiffeners and that of an axially
compressed cruciform column provides some important indicators. For it is well known that a
cruciform column is extremely sensitive to initial imperfections in the plastic range [12).
Whether, and to what extent, this imperfection-sensitivity of the "cruciform-like" stiffeners
affects that of the stiffened shell would seem to require further elucidation. In particular,
whether any large discrepancy between flow and deformation theory values of 0"1 (and O'c for
the stiffened shell) can be explained, as in the case of a cruciform column[12], in terms of the
effects of initial imperfections, would be worth investigating.
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APPENDIX
The boundary conditions obtained from the line intearals. eqn (28), are given here. These are:

(a)

(i)

(ii)

(iii)

(iv)

(b)

(v)

(vi)

(vii)

for any panel. x =0,/:

Ii, =0

Ii., =0

CTr/tiI.. - iii... - (I/r)m.,., '"' 0

iii. =0

for the ith stiffener. i.e. at flO =80:

[Ii..)~l~'~_.. -J+O (N.... + N.",) dy +[N.,l::~o =0
-0

In.)~:~'~-..+JO (M•.u +2M.,.., +MM, - CTr/, Wou)dy - [2M.,.. +M,.,);:~o = 0
-0

or Ii =0

or V"O

or w=O
or til.. =0

or Ii =0

or v-o

or tiI .. O

(viii)

(ilt)

(c)

(x)

(d)

(xi)

(e)

(xii)

(xiii)

M., .. 0

at x .. O. , and BC/I - :t 60:

1iI..,-0

at x- O. / and fill .. 60:

N.-O

N.,-O

or Iii.. -O

or ii.w.. -O
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(xiv)

(xv) M. =0
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or 6,w.. =0

or ri.. w,.. =0


